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anpr cd to the scaled residuals, using a yery general class of scale estimates, and (2)

Bounded influence function type generalized M-estimates. Estimates in the first class are

on...Ld as the solution of a minimization problem, while estimates in the second class are

sreced by an esnmating equation. The first class of M-estimates is sufficiently general to

-- inc!ue both Huber "Procosal 2" simultaneous estimates of regression coefficients and

residuals scale, and Rousseeuw-Yohai "S-estimates" of regression [Robust and Nonlinear

Tire Series (I19S4). 256-272]. It is shown than an S-estimate based on a jump-function type

p solves the n-max bias problem for the class of NI-estimates with very general scale.

This estimate is obtained by the minimization of the a-quantile of the squared residuals,

% where cc a(a) depends on the fraction of contamination P. When e-- .5, (X() -- .5

and the rin-max estimator approaches the least median of squared residuals estimator

introduced by Rousseeuw [J. Am. Statist. Assoc., 79]. For the bounded influence class of

GM-estimates, it is shown the a "sign" type nonlinearity yields the rain-max estimate. This

estimate coincides with the minimum gross-error sensitivity GM-estimate. For p = 1, the

ootimal GM-estimate is optimal among the class of all equivariant regression estimates. The

Main-max S-estimator has a breakdown point which is independent of the number of carriers

p and tends to . 5 as E increases to . 5, but has a slow rate of convergence. The min-max

GM-estimate has the usual rate of convergence, but a breakdown point which decreases to

- zero with increasing p. Finally, we compare the min-max biases for both types of

,esimates. for the case where the nominal model is multivariate normal.
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MIN-MAX BIAS ROBUST REGRESSION

ABSTRACT

This paper considers the problem of minimizing the maximum z ,ymrtouc bias of regression

estimates over e-contamination neighborhoods for the joint di nhution of the response and

carriers. Two classes of estimates are treated: (1) M-estimatrs with bounded function p

applied to the scaled residuals, using a very general class of scale estimates, and (2)

Bounded influence function type generalized M-estimates. Estimates in the first class are

obtained as the solution of a minimization problem, while estimates in the second class are

specified by an estimating equation. The first class of M-estimates is sufficiently general to

include both Huber "Proposal 2" simultaneous estimates of regression coefficients and

residuals scale, and Rousseeuw-Yohai "S-estimates" of regression [Robust and Nonlinear

* Time Series (1984): 256-2721. It is shown than an S-estimate based on a jump-function type

* - p solves the min-max bias problem for the class of M-estimates with very general scale.

This estimate is obtained by the minimization of the a-quantile of the squared residuals,

where a= a (e) depends on the fraction of contamination e. When e-+ .5, t(E)- -+ .5

and the min-max estimator approaches the least median of squared residuals estimator

introduced by Rousseeuw [J. Am. Statist. Assoc., 79]. For the bounded influence class of

GM-estimates, it is shown the a "sign" type nonlinearity yields the min-max estimate. This /
estimate coincides with the minimum gross-error sensitivity GM-estimate. For p = 1, the

optimal GM-estimate is optimal among the class of all equivariant regression estimates. The

min-max S-estimator has a breakdown point which is independent of the number of carriers

p and tends to .5 as e increases to .5, but has a slow rate of convergence. The min-max

GM-estimate has the usual rate of convergence, but a breakdown point which decreases to

zero with increasing p. Finally, we compare the min-max biases for both types of

estimates, for the case where the nominal model is multivariate normal. " ":

.,....,................,. ......°.,': , . .



1. INTRODUCTION

In spite of the considerable existing literature on robustness, there is relatively tittle

published work on global robustness. Huber's (1964) min-max variance approach is based

on neighborhoods which are not global by virtue of exluding asymmetric distributions. The

shrinking neighborhood approach introduced by Jaeckel (1972), and used also by Bickel

(1984) and Beran (1977a, 1977b), among others, attempts to deal with asymmetry by putting

bias on the same asymptotic footing as variance. But, the shrinking neighborhood approach

could hardly be called global. Approaches based on the influence curve, such as optimal

bounded influence regression (Hampel, 1974; Krasker, 1980; Krasker and Welsch, 1982;

Huber, 1983) inherit the local or infinitesimal aspect of the influence curve itself.

It seems that the main global approach to robustness in recent years has been centered

around the construction of high breakdown point estimates, particularly for multivariate

problems where this approach presents real challenges. See for example: Donoho (1982),

4 Donoho and Huber (1983), Stahel (1981), Rousseeuw (1982), Rousseeuw and Yohai (1984),

Yohai (1987), Yohai and Zamar (1986). In the latter two papers, the authors construct

regression estimators which have both high breakdown points and high efficiency.

The br akdown point approach is highly attractive for a number of reasons, not the least

of which is the transparency of the concept and the ease with which it can be communicated

to applied statisticians and scientists. On the other hand, one nonetheless wishes to have

"* global optimality theory of robustness which emphasizes bias control for fractions of

contamination smaller than the breakdown point. Furthermore, bias is itself a very

transparent concept.

Along these lines we recall that Huber (1964) established the following result in his by

now classic paper: The sample median minimizes the maximum asymptotic bias among all

translation equivariant estimators of location, the maximum being over epsilon contaminated

distributions (and also Levy neighborhoods). It seems that this approach to global

-4_
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robustness, namely the construction of min-max bias robust estimators has been essentially

neglected until quite recently, and this problem is quite clearly articulated in Hampel et. al.

(1986) (see lower left entry of Table 2, p. 176). Among the recent work in this area, we

know of the following as yet unpublished papers: Donoho and Liu (1985), who establish

attractive bias robustness properties of minimum distance estimators; Martin and Zamar

(1987a), who obtain min max bias robust estimates of scale; and Martin and Zamar (1987b),

who construct min-max bias robust estimates of location, subject to an efficiency constraint

at the nominal model. See also, Zamar (1985) for min-max bias orthogonal regression M-

estimates.

-, In this paper, we construct min-max bias robust regression estimates for two different

classes of estimates: (i) M-estimates based on bounded p functions and general scale (i.e.,

general scale estimate for residuals), and (ii) GM-estimates having bounded influence

curves. In the first case, the estimates are defined by a minimization problem, wnereas in the

second case the estimates are defined by an estimating equation.

It turns out that S-estimators introduced by Rousseeuw and Yohai (1984), can be

regarded as special cases of M-estimates with general scale, as can Huber "proposal 2" M-

estimates for regression and residuals scale. In fact, our min-max bias M-estimate is just

that, an S-estimate.

The paper is organized in the following way. Section 2 introduces epsilon-

contaminated model for regression, M-estimates of scale based on bounded, symmetric

functions p, and the related S-estimates for regression. Section 3 establishes an expression

for the maximum bias of an S-estimate. We also display the special form this expression

takes for nominal multivariate normal models, and also the special form obtained for jump

functions P, , which take on the values 0-1, with jumps at ±c. Section 4 introduces the

class of M-estimates with general scale, constructs a lower bound A for the maximum bias

for fixed p, and a lower bound A* for A as p ranges over a broad class of loss
.4'
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functions. It is then shown that an S-estimate achieves A* Section 5 constructs min-max

-7 bias GM-estimates. These estimates are based on a "sign" function type nonlinearity in the

estimating equations, which corresponds to a weighted LI regression, with weights inversely

proportional to the norm of the vector of carriers. Throughout Sections 2-5, we have for

simplicity considered the case where the intercept is known. In Section 6 we indicate how

our results may be extended to the case when the intercept is unknown and must be estimated

along with the slope parameters. Finally Section 7 provides a comparison of the biases of

min-max S-estimates and GM-estimates for the case where the nominal model is

multivariate normal.

0

e c r- r
0

.
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2. GENERAL SETUP AND S-ESTIMATES

2.1 The target model and maxi ium asymptotic bias.

We assume the target model is the linear model

y = X'90 + u

2where x=(x,x 2 ..... x)' is a random vector in RP  Oo=(Ol0 .... Op0)' are the

true regression parameters, and the error u is a random variable independent of x. Let F0

be the nominal distribution function of u and Go the nominal distribution function of x.

Then the nominal distribution function H0 of (y, x) is

" Ho(y,x) = Go(x)Fo(y-x'0 0 ) (2.1)

We assume that Go is elliptical about the origin, with scatter matrix A. Correspondingly,

we work with zero intercept until Section 6, which discusses how our results can be extended

to deal with an intercept.

Let T be an RP  valued functional defined on a ("large") subset of the space of

distribution functions H on IRP +1 This subset is assumed to include all empirical

distribution functions H. corresponding to a sample (y,, x), (y,, x,,) of size n

* from H. Then T, =T(Hn ) is an estimate of 0 .

It is further assumed that T is regression equivariant, i.e., if y =y +x'b and

X=CT x for some full rank p xp matrix C, then T() =C [T(H) + b], where H is

- the distribution of (F, i). Correspondingly, the transformed model parameter is

0 00 =C-[ 0 +b]

We define the asymptotic bias bA = bA (T, H) of T at H so that it is invariant

under regression equivariant transformations:

bA(T,H) = (T(H)-O)' A(T(H)-O) (2.2

/""m

0!-
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Therefore, we can assume without loss of generality, that Go is spherical, i.e., A is

the identity matrix, and that 00 =0. Accordingly, the nominal model (2. 1) becomes

H0 (y, x) = G0 ( (lxjl ) F0 (y) (2.3)

and correspondingly the asymptotic bias of T at H is given by the Euclidean norm of T:

b(T,H) = IT(H)II. (2.4)

If the operator T is continuous at H, then T(H) is the asymptotic value of the

estimate when the underlying distribution of the sample is H. It is assumed that T is
asymptotically unbiased at the nominal model H0

* T(H0 ) = 0. (2.5)

. We will work the e -contamination neighborhood of the fixed nominal distribution H0

Ve = {H: H=(1-e)Ho+eH*}. (2.6)

where H* is any arbitrary distribution on R/+l The maximum asymptotic bias of T

over Vi is

B(T) = sup {IIT(H)II: HE VI }. (2.7)

2.2 M-estimates of scale.

Let p be a real-valued function on R1 satisfying the following assumptions.

Al. (i) symmetric and non-decreasing on [0, oc), with p(O) =0

* (ii) bounded, with lim p(u)= I
U -4

(iii) p has only a finite number of discontinuities.

Let 0 < b < 1, then given a distribution function F, the M-scale functional is defined

0

i-i- (se Huber,1981) a

- . . *. . .
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s(F) = inf{s EF p( -) < b }. (2.8)

Given a sample u-( u ..... u,) from F, the corresponding M-estimate of scale is

obtained from (2.8) by replacing F by the empirical distribution Fn of u.

It is easy to prove that

s(F) > 0 iff PF(U=O) < 1-b. (2.9)

If this condition is satisfied with s(F) finite, and p is continuous, we can replace the

inequality by equality in (2.8).

It can be shown that the breakdown point due to implosion, i.e., due to contamination at

the origin which results in s (F)= 0, is 1 -b, and the breakdown point due to explosion,

i.e., due to contamination tending to infinity which results in s(F)= oo, is b. The overall

breakdoAn point is then c' = min{b, l-b}. For details see Huber (1981).

In the case where one is interested in estimating scale for its own sake, one usually

forces consistency at a nominal model F0 by setting b -EFo p(u). This issue turns out to

be irrelevant for our present purposes, since as we see in the next subsection, we will only be

interested in obtaining a smallest M-estimate of scale with respect to the regression

parameter 0 in a particular parametrization of the scale functional. The choice of b will

therefore remain at our disposal in obtaining a min-max bias regression estimate.

2.3 S-estimators of regression for general H

Let (y, x) IR- + I be a random vector with arbitrary distribution function H, e.g.,

H could be the empirical distribution function for (y, x). For any 0 IR let H. be the

* .distribution of the residuals

* r(0) = y -x'O (2.11)

Let s(F) be any M-estimate of scale as defined in Section 2.3, and to emphasize the

S, -. -. .-S . .. . .
" a " . " . " . " ' .- , . " " . ' -" - , " ., .. -' " " ." " . - ," : . " ." ". " , . ' - ' " . .. " ' - - . - , . . . . , . - . -' " . - " " "• 

"
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p.

K•.

independent roles of 0 and H in determining H, let s (0, H) =s (H).

A functional T(H) is said to be an S-estimate functional of regression (see Rousseeuw

and Yohai, 1984) if there exists a sequence 0,, E RP such that

limn * = T(H) (2.12)

and

lir s(O,,H) = inf s(e,H). (2.13)

With regard to the existence of such a sequence, we assert:

If p satisfies A 1 and H satisfiesU

sup PH(X'O=O) < 1-b (2.14)su IeIl = 1

then there exists some T(H) satisfying (2.12) and (2.13).

This is a consequence of the following Lemma.

Lemma 2.1. Suppose that p satisfies Al and H satisfies (2.14). Then II 4 II

implies lir s On, H) =.

Proof of Lenma 2.1

*l Suppose that nII oo and let On' . Without loss of generality we can
lio 11

assume that 0: - 0* with 0* = 1. To prove the lemma it is enough to show that for

all s > 0

I

-. • . - . -. , • • . . - .. . . . . . .. . . . . ......-...... . . ..- ' . • . • • . -. -: . " .' .-. - .-,
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Indeed, we can write

EH{ P([Y-x'On]/s)} EH P([y-llellx'e*Is) (1,9>0)

where IA is the indicator of the set A. Since it is immediate to prove that

p((y -Il0,x'O* s) l(,G: >0) -+1('o,>o) as. H0 , the lemma follows from the

- dominated convergence theorem and (2.13). 0

It is easy to prove that if Al is satisfied and p is continuous, then (2.12) and (2.13) will

imply

s(T(H),H) = min{s(0, H): 0 eRP} (2.15)

However, in general (2.15) may not be true.

Observe that there may be more than one value T(H) satisfying (2.12) and (2.13). In

that case the choice of T(H) is arbitrary.

.

I .

0 -

. .. . . . . . . . . . .. .
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3. MAXIMUM BIAS OF S-ESTIMATES

3.1 Maximum bias of general S-estimates

Assume now the target model H0 is given by (2.4). We will need the following

assumption.

A2. F0 is absolutely continuous with density f0 which is symmetric, continuous and

strictly decreasing for u 2 0.

A3. Go is spherical and PG ( x'O= 0) =0 -V 0 e R P with 0 o.

Under A3, it is easy to see that the distribution of x'9 depends only on 11011. Thus we set

g(s,ll01) = EHop (3.1)

* The following Lemma is a key result.

Lemma 3.1. Assume that p satisfies A], F0 satisfies A2 and Go satisfies A3. Then g is

*continuous, strictly increasing with respect to 11011 and strictly decreasing in s for s > 0.

Proof of Lemma 3.1. Continuity of g follows from Al (iii) and A2: since p is continuous

* a.s. [F0 ], the expectation of p (y - x'O) with respect to F0 is a continuous function of

x'O (see for example Billingsley, p. 181). Let s2 > s1 . Since p y-x'O)/ s

S p y -x'0)/ S2] a.s. [H o ], we have EHOP 1(Y -x'0)/ S, EHP y-x'0)/s 2

In addition, we have strict inequality unless (y -x'O)/s = (y -x'O)/s 2 a.s. [H0 ] that is

unless y - x'O = 0 a.s. [H0 ]. The last is impossible because of independence of y and x

By A3, the distribution of x'a is the same for any unit vector a. Thus the distribution of

x'O is the same as that of 11011 z , where z is a random variable distributed as x'a, 1ail =

Assume without loss of generality that s = 1 and let r2 0 0. Since y is symmetric2ym0i

.............................- ..

_-.-. .
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about 0 and independent of z, the conditional expectation k(t, z) E[ p(y -rz) z] is

a non-decreasing function of I t I Hence

:'"E- f 9(t2, Z)-9(11, Z)I 0

and equality holds only if t = t2z almost surely, that is only if z =0 almost surely.

The last is impossible because of A3. C

From Lemma 3.1 it is immediate that an S-estimate T(H) is Fisher consistent at the

target model Ho .

Let g 1
1( 0,19II) be the inverse of g with respect to s and g2-1(s,) the

inverse of g with respect to 11011. The following theorem gives the maximum bias of an S-

estimate.

Theorem 3.1. Under the same assumptions as in Lemma 3.1, the maximum bias B (T) of

an S-estimate T over the contamination neighborhood V. is given by

g 2
- gg - (---o), b if E< min(b,I-b)

B (T)= (3.2)

0'0-.-- o= if eF2min(b, I-b)

- Therefore the asymptotic breakdown point of T is c z min (b, I - b).

Proof. Let C g 2
1  b"" [ 0] b ]andsupposethat e<min(b, I-b). To

* prove that

8 (T) !5 c (3.3)

it is enough to show that for any H of the form H = (1-E)H0 +EH* 11011 >c implies

s(O,H) > s(O,H). (3-4)

. . . . ....-- . . .. v- . . ....- -.- -.-. .. .',,,.. . .... . . . . . . . ... ."." , _.
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Puts I =g-1 ' b 0). Then by Lemma 3.1, 11011 > c implies that

:-g (sI, ll0ell) > b (.5)

Also by Lemma 3.1, there exists v2 > s1 such that

g (s 2, 1101) > (3.6)

Then

EH - ( -e)g (s2 Ilel) > b

and therefore by definition of s (O, H) s (H0 ) (see (2.8)) we have

S2 5 5(0,H). (3.7)

On the other hand

0) (3.8)

Combining (3.8) and Lemma 3.1, we. have for any H =( I -e)H 0 +e H* and any s >s1 •

EH PfI] (-E)g (S, 0)t + S! (1-e0g(s1 ,)+

Therefore s a s (O, H) for all s > s 1 , and so

si  s(O H). (3.9)

- Thus (3.4) follows from (3.7) and (3.9), and so (3.3') holds. Now we will prove that

.B (T) ;- c (3.10)

Let c1 be any positive number smaller than c and let I0*1=c. Let H* be the

distribution concentrated at the point mass (y,,, x ) where Y, = X,, 0* , X, oo and

y, =x',, 0* . Set H. - (1 -e)H 0 + H-" . In order to prove (3.10) it is enough to show

. ,.

i ". . . . . , . .- .. , . . ' .' - -q,"- ... .-,-.

" " "a
°

, "t" • .* -. .•. ," ° % "•" " - . '• "
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that

sup lT(H,)II > C1 . (3.11)
"- 'I

Suppose (3.11) is not true. Then by passing to a subsequence, which we continue to label

H n , we have T(H) =0, with

rnlim , = (3.12)

and

11I1I < 11*l = c. (3.13)

It follows that
I

irn y,,-x', li = ti 0 Xr (le*l12-e*,O) = 00*.

Then since

" :iY E ~ -X'O Y Xs On

EHp P j n (1-E)g(s,lO,,ll)+e p [R-Sn (3.14)

letting s <s, =g 1
1 (1-.e ,0) and using Lemma 3.1 gives

lim n EH.p  ] (l-E)g(s,0)+E > (1-e)g(s 1 ,0)+e

*(I-e) b -e +e b

This implies that

J im.** s(On,H,,) S V s <s 1

and so we have

lim s(O.H n ) > s. (3.15)

O

Onth ohe"hn

I-
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(1-E)g(s 1 ,c 1 ) < (1-e)g(spc)= b

and by Lemma 3.1 we can find S2 < s such that

(1-E)g(s 2,c) < b

This gives

EH. p 'yx' j (1-E)g(s 2,c) < b
S2

and

s(0*, Hn) < S2  (3.16)

-0 Since (3.15) and (3.16) contradict the fact that T(H.)=0, minimizes s (,,H,) for each

n, we have established (3.10). In order to complete the proof it is enough to show that if

e T min (b, 1 - b), then

g2- t_ - 0] -)o (3.17)

Let b 5 0.5, so that min (b, 1 -b) -b. Then we have
li 0 Ji
imybg - , = +im_0 g1 (8,0)-

* and so

li~g1  gi[ ~li]1 ---- r gj'(s, = Ao.)[=l- im 2-~ 1 _ ,0], I-m -1(S b0E I-  b -1 _e I- s Too9 -

3.2 Maximum bias of S-estimates for (y, x) multivariate normal.

el-.':i If z=(y,x) - N(O, IP,),then

g(s,Y) = h((l+y 2 )2/S)

0-'
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where h(X) E p(ku),with u -N(0, 1). Then

h -'(t)

and

g 2  (s,t)= ([s h (t)]2 1)

This gives the following expression for squared bias:

r. h-' b

B) [ 1. (3.18)

3.3 Maximum bias of S-estimates when p is a jump function.

Consider the special family of jump functions PC (which satisfy Al):

o if lI <.c
S(u) = if u2c (3.19)• {i if lIl~c

Given a sample u= (u 1  u,), the corresponding M-estimate of scale is given by

- s,(u) ± lu( -[lb):'- C

where u .. are the order statistics for the absolute values

* lull,..., tl.
For the choice PC the corresponding regression S-estimate minimizes the absolute

value of the (approximate) I - b quantile of the absolute values Yi- xi of the

.S residuals. Note that this regression S-estimate does not depend upon the choice of c, and so

we henceforth set c = 1.
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-~- ~When b=.S, s,(U)= JulI is the median absolute value (MAV) estimate of

2

scale. The corresponding S-estimate is identical to Rousseeuw 's (1984) least median of

squared residuals (LMS) regression estimate. (Minimization with respect to 0 of a quantile

of any monotone transformation of the absolute values yi - x'i SI results in the same

estimate.)

The following Lemma gives the maximum bias of an S-estimnate when p =p.

Lemma 3.3. Let Tb be the S-estimate with jump function p1 and right hand side b .

- - Assume FO satisfies A2 and Go satisfies A3. T7hen

where

*G, 1 1011) = 1-EG.Fo(t+x'O)+EG0Fo(-t+x'0). (3.20)

(i) inf B (Tb)
< <b <1 -

- f 0
1 2(l )1 fCGtI (2( l-FO@))+~jA- (3.21)

Proof. In this case we have

g~sIOI) =P( -I s

and so

92 
1 (,)=G 1 X.(3.22)

-1 SI ,-

0'k
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We also have

g(s,0) = 2( 1-F 0 (s)) (3.23)

Using (3.20) and (3.23) in (3.3) gives (i). The result (ii) is obtained by substituting

t=F 0 1 1 2 b -E in(i). 0t=F0-  ( 1 2(-E)

In the case that (y, x) is multivariate normal, using (3.18) and the fact that for p p,

h(X) =

we get

B {2T (3.24)":"B 2(Tb ) = b ;~ : e ) ]-1(.4
.:;? -l( I 2(1-e)

where D is the N (0, 1) distribution function.

It is interesting to note from (3.3) that two distinct values of b give rise to any specified

breakdown point F* e (0, .5), namely b = E* and b = 1-E*. The estimates Tb for

two such values of b have different maximal bias curves (i.e., plots of B (Tb ) = B (Tb, E)

versus e ), both of which explode at e'* . In Figure 1 we display two such curves, with bias

* as a function of e given by (3.24) for the values b = .15 and b = .85, which corresponds

to a breakdown point e* = .15. The breakdown at e* = .15 is due to implosion for

b = .85 and due to explosion for b = .15 (cf., comments in Section 2.2).

S

0

,-o .
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4. M-ESTIMATES WITH GENERAL SCALE

4.1 Definition of M-Estirnates with general scale

Let p be a function satisfying Al and let s (H) be a (very) general estimate of the

residuals scale. For example, the general scale functional s (H) may be determined

simultaneously with 9, or independently of 9. It is assumed that s(H) is regression

invariant (i.e., invariant under regression transfornations )7 = y + x'b and xi = CT x) and

residuals scale equivariant (i.e., equivariant under residuals scale change ai = au)

Furthermore, we will assume that s (H) has a breakdown point greater than e , namely

A4. s1 =inffs(H): H=(1-fe)H +EH*} l

S2 supf s(H): H=(l-e)HO+eH*} <~

Then an M-estirnator T( H) of regression, with general scale, is determined by solving

the minimization problem

inf 9 EH p 'O (4.1)

Under the assumptions on s (H), T(H) is clearly regression equivariant.

If the infimum. in (4.1) is attained then it defines T(H), with the choice of T(H)

arbitrary in the case of non-uniqueness. If a value 0 which attains (4. 1) does not exist, then

T(H) is defined by

T(H) im~ 0, (4.2)

4 where 0,, satisfy

X' - i7-

4rnim EH [ s () infrR EH P s j (4.3)

Again, in the case of non-uniqueness, the choice of T(H) is arbitrary. It is easy to check

that S-estimates are special types of M-estimates with general scale (see Rousseeuw and

p..

Letp e..fu....saisf.n.A....lt.(H...a.vey).enra etimteoft.
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Yohai, 1984), as are Huber (1971, 1981) "proposal 2" simultaneous M-estimates of

regression and scale.

4.2 Lower bound for the minimax bias of M-estimators.

Let g (s, I11l) be as in (3.1) and put

A (S) = gS 1 ' g(sO)+jS.- - ] (4.4)

AP = infA[,,, AP(s) (4.5)

The following lemma shows that A is in fact a lower bound for the maximum bias over
p

0-- V of an M-estimate with general scale.

Lemma 4.1. Let T be an M-estimate with general scale. Assume p satisfies Al, Fo

satisfies A2, G o satisfies A3, and the scale s(H) satisfies A4. Then

B (T) > Ap

Proof. Let B =B (T),supposethat B <A ,andtake y>O suchthat

B ! Ap-y. (4.6)

*- Also take I such that

A - I< 111 A - (4.7)P P4

• Let Hi* be the distribution corresponding to a point mass at (yji x) where

y -x' 0=0 and x, =d with ki ---c. Put H (1-e)H 0 +eH* and

00* = T(H i). (4.8)
Od

""'."If 0 £* is unbounded, (4.6) is contradicted and the theorem is proved. Assume Oi* is

.- -.- ?. .o -- -.
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bounded, and then we may also assume that O0' - 0*. By A4 we may assume that

s, =s(Hi )-s > 0. According to (4.6) we have

- - II 5 II A . (4.9)

Let

EH ' 1]" "L i (0)= EH. P

Then by Lemma (3.1) we have

- .Since (4.7) and (4.9) imply

116112

* £S.

we have

lim L,(0*) a (l-r)EH4P + C

= (1-e)g(s,0) + re

-? We also have

L ( e E (-e)g(si 6)

and then by Lemma 3.1 we have

limLi (6) 1 (l-E)g(s,e)

Since L, (01*)!< Li (6) we also have

0 °.

_................................................
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(1-e)g(s,O) + E S (1-E)g(s,9)

Therefore by Lemma (3.1) we have

11611 > g2- [s,g(s o)+j+

= A(s) > Ap

and this contradicts (4.7). [

4.3 Optimality of S-estimates with jump function p.

From now on it will be convenient to show explicitly that g depends on p, and so we

will wTrite g (s, 11011). For t E R and s > 0 define
p

hP(s I)= Ep [2t

We will need the following assumption.

A20. Fo has a density fo satisfying A2, and for t > 0 and y > 0

a(y) fo(Y +t)+fo(Y -0
"'-' fo(y )

:: "- is a non-decreasing function of y.

- A2* is satisfied for example in the important case where F0 is the Gaussian

* distribution N (0, a 2 ). This follows because in the Gaussian case we have

" ) fo(Y +t)+fo(Y -

a(y)= = 2e ' cosh
fo (y)

and

|.10
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[-L

a )= 2--e sinh 2! 0 if t>0 andy>0.

A2* evidently holds in a number of other interesting situations - for example it is easy

to verify A2* when F0 is double exponential.

The following Lemmas will show that A is minimized when p is a jump function.

This will enable us to compute the minimum of A
p

- Lemma 4.2. Assume p satisfies Al and Fo satisfies A2*. Let s > 0 and show that the

jump function P, satisfies

* hP,(s,O) = h P(s,0) . (4.10)

Then

hP,(st) > (s, r) -V t ER

Proof.

0 h p,(s, t) - h(S, t) = -S J p(y) +)+f(sy dy

1 1 1'2.-+s ( 1-p(y)) [fo(sy +t)+f 0 (sy-)d

S

', fo(sc +t)+ fo(SC -t)
With k = ,)A2* gives* fo (sc)

I1 !5 skj p(y)fo(sy)dy

12 2 sk f0p(y)f 0 (sy) d.

!S'

-------------------------------------------- .Y

..... . . . . . . . . . . . . . . . . . . . . . .
.
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Thus (4.10) gives

hp (sk)-hp(sX)> k s J p(y)fo(sy)dy +s (1 -p(y))fo(sy)dy > 0 . 0

Lemma 4.3. Assume p satisfies Al, F0 satisfies A2* and G o satisfies A3. Then for any

s > 0 there exists a jump function pc such that

(i) gp,(s,O) = go(s,O)

(ii) g (s,t) g (s,t) -V te R

I Proof: Follows from Lemma 4.2 conditioning on x. 0

Lemma 4.4: Assume p satisfies Al, Fo satisfies A2* and Go satisfies A3. Then

(i) A P(s) a inf c A ,

(ii) ap (s) = Gs, 1  2(1-FO(sc))+ -]

where G, (k) is defined in (3.20).

Proof:

(i) FoUows immediately from Lemma 4.3.

(ii) Follows from the definition of A P (s), (3.22) and (3.23). 0

6 The following theorem, together with Lemma 3.3(ii), shows that an S-estimator with a

jump function p1 minimizes the maximum bias over the class of M-estimates.

..

I-j

...........................................
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Theorem 4.1. Let T be an M-estimate and assume Al, A2*, A3, and A4. Then

B (T) Z inf G- [2( 1 -FO@)) +(41

Proof: The theorem follows from Lemmna 4.4 since G,- 1 t2 (I -F(O) +y.j is onlv

defined when 2[ 1 - FO(t+ E~ < I and this is equivalent to

< FO

I-

-° , -. ° • . .- * - ., . .
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5. GM-ESTIMATES

5.1 Characterizing the Bias of GM-Estimates

We now consider GM-estimates of regression T = T(H) obtained by solving

EH1"(y-x'0,jIxI) x 0 (5.1)

for 0. The following assumptions will be used.

A5. fl(u,v) is

0 (i) continuous,

(ii) odd, and monotone non-decreasing in u,

(iii) bounded, with sup T (u, v)=1.
* "'V

Observe that the optimal bounded influence estimates obtained by Krasker (1980) and

Krasker and Welsch (1982) of this form with 1( u, v ) = W, (uv) in the Huber family

, (u)= sign (u) max (c, u ) (5.2)

The following lemma characterizes the possible biases of GM-estimates when

H E V

Lemma 5.1. Assume that 71 satisfies A5 and F0 sati3fies A2. Let T(H) be the GM-

estimator defined by (5.1). Then there exists H,=(1 -E)Ho+eH such that

* T(-I )-( * if and only if

.E ,Tl(y -x'6, lx_)_ II < - - (5.3)

lxii..-

Proof. If there exists an H e VE such that T(H)= 0, then (5.3) follows immediately

from (5 1). Suppose now that (5.3) is satisfied with strict inequality. We will show that in

. ..
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this case there exists u, v with v > 0 such that

w here w =EH, TI (Y -X'6 11, 1 xi Take as fl* the distribution with point mass at
11xI

N) v jjwKjY ou + x'0oThen if H 1 ) HO +eH*we have

E,1 rIO(-x'0),IlxlI) X! (1-E)w+EilwI - 0vwi

5.2 Optimality of the sign function 710.

* Consider the GM-estimate based on the "sign" function T ( u, v) =sgn (u)

Exg y-X 1 -0. (5.4)

The solution 0(H) of (5.4) minimizes

Thus the estimate is a weighted Li estimate with weights i 11 for a finite sample

(YL X~), i= 1 n . In the case of p =1 it is easy to see that the estimate is the

6 median of the slopes:

med {5I6}

We shall now show that the choice T( minimizes the maximum bias over V,~ We need

the following Lemma.

60

N



-26-

Lemma 5.2. Assume xg: IR - IR is (a) odd, (b) monotone non-decreasing and

- (c) sup W= 1 It follows that:

(i) q (t)=Er,xV(y +t) is monotone non-decreasing.

(ii) If F0 is symmetric, then q (t)t _O and q W(-t)=-qW(t).

(iii) If Fo satisfiesA2, then Iq (t)l Iq (t)l where %(u)=sgn(u).

Proof.

(i) Let t, , then

qW_(t2)-q_ [W(Y +t 2 )-J(y +ti dFo(Y) 0

by property (b) of Wt.

(ii) Since q (0)= 0, (i) gives q(t)t O. On the other hand

q(- = EFo1I(y -t = EFo(-y -t)

-- EFox (y+t) = -q (t)

(iii) By (ii) we can assume r > 0, and therefore

q. qg(t) f (y)[f(y -t)-f(y+t)] dy

" Since (y) <I and f(y-t)>f(y+r) for y>0, wehave

q J [f(y -t)-f(y +t)] dy
•

,-_ q ( t) .

Now we can prove that rT0 is optimal.

Theorem 5.1. Suppose that Tj satisfies A5, FO satisfies A2 and G o satisfies A3. Let T be

the GM-estimate based on rl and To be the GM-estimate based on rlo, then

S..,
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B (T,) B B(To,)

Proof- Let

x (

.43 implies that the right hand side expectation depends only on itH.Then according to

Lemma 5. 1 it is enough to show that

Setting 0 = (1, 0,.. 0)' for X 0 without loss of generality, we have

* n(X EHQn( y -Xkx 1 X _Lx (5.9)

Taking conditional expectation with respect to x in (5.9) we get

** r* x)= EH, F(y -Xillxi)-Lj X EFIy-_x, x (5.10)

and therefore by Lemma 5., putting W(y)=7l(y, ljxii) and t -x 1  we get

Ej1 1,T(v -kx 1 , lxii) L EHJ10 (y -Xx, lI)DX (5.11)

11ii 11lxii

Then (5.9)-(5.11) yield (5.8). 0l

.3 Optimatily of Tr, among all Equivariant Estimates for p I

So far we have obtained min-max bias robust estimates over two specific classes of

equiviriant regression estimates. It would of course be highly desirable to obtain a min-max

bias solution over the class of all equivariant reqgression estimates. Although it is not yet

clear how to obtain such an estimate for general p , we have the following solution for the

special case p I



-.C

-28-

Theorem 5.2. For the model (2.6) with p = 1, the median of the slopes estimate e,,

given by (5.6) minimizes the maximum bias among all regression equivariant estimates.

Proof: The proof follows lines quite analogous to Huber's (1964) proof of the min-max bias

property of the median among all translation equivariant estimates.

5.4 Computing the maximum bias

Lemma 5.3. Assume T" satisfies A5, F0 satisfies A2 and Go satisfies A3, then if T is the

GM-estimate corresponding to Tj we have

r (i) (k) is monotone non-decreasing in X•

._ .(ii) B (T)= -

Proof According to Lemma 5.2, t x) defined in (5.7) is monotone non-decreasing

in . for all x. Then (i) follows. Use of (i) and Lemma 5.1 gives (ii). 0

We will compute now t0(X) when y and x are normal. From (5.6) we have for

p> 1

t1 1 (X)= E sign(y -x) x

where y, and x are N(O, 1) and v is chi-square with (p - 1) degrees of freedom.
2

.. ) , ' y, x, and v independent. Then

EX E2,0(X x) - ) x
2

(x +v)

1" "

- ... -. . - - . - -.. , i - . - . •- ° • -- - ' . - - ' 'j " " - ." - . " ' . -
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In the case that p I

t E sign (y - Xx sign x

E I sign( X)
x

wAhere -v rt are independent N (0, 1). In this case v = is Cauchy and then
x

t~X)= 12[tan (h) = t (h)

* Therefore in this case we have

B B(To) tan 7

2 --
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6. INCLUDING THE INTERCEPT

The results so far do not cover the case of a regression model with an intercept. This is

because they were obtained under the assumptions that the contamination affects all the

coordinates of x. Nevertheless, all our results for the regression parameter remain

unchanged for the regression model with intercept:

y = a+x'0+u (6.1)

where y, x, 0 and u are as before and a is the intercept parameter.

Consider the following class of S-estimates of (c, 0): Let T* be any location

functional defined on the class of distribution functions on R. Given a p function as in

Section 2. 1, and a distribution function H on + we define an S-estimate T(H) of

the regression parameter as the vector 0 which minimizes the scale functional s (H*),

where H. is the distribution function of y-x'O-T*(H 0 ) and where H9 is the

distribution function of y -x'O. Now one naturally takes the final location estimate to be

T*(HT(H)), i.e., the location estimate T* applied to the "residuals" y -x'T(H). This

class contains as a particular case the usual S-estimate of the regression and intercept

parameters, simply by taking T* equal to the corresponding S-estimate of location. Similar

extensions are possible for M and GM estimates.

Assume now that T* is Fisher consistent, i.e., for any symmetric distribution F on

R, T* (F) = 0 and has breakdown point at least E. Then it can be shown that the results of

Theorems 3.1, 4.1 and 5.1 still hold for estimating 0 in the model (6.1).

It remains to find (T, T*), with T an M-estimate with general scale (or a GM-

estimate) and T* a location estimate, such that the the maximum bias of the intercept is

minimized. We conjecture that choosing T* to be the median and T the corresponding

* mm-max bias estnmate for 0 will solve this problem.

J,

No .............................................
p. .. .. . . .. . . . . . .. . . . . .. . . . . .

... .. ... .. ... .. ... .. ... .. ... .. ... ..



-[.- 1

''" -3 1 -

7. COMPARING MIN-MAX BIAS ESTIMATES

The result of solving the min-max bias problem over the class of regression M-

estimates with general scale and bounded p, yields the discontinuous jump function p,

Consequently the S-estimate which achieves the min-max bias does not have an influence

curve, and it has a slower rate of convergence than usual: namely n-1I3, the same rate of

convergence as Rousseeuw's (1984) least median squared residuals (LMS) estimate. This is

evidently the price one has to pay when one wishes to control bias over the class of Nl-

estimates with bounded p. On the other hand, the min-max bias is independent of the

number of carriers, p.

The min-max bias GM-estimate of Section 5 does have a bounded influence curve (see

Hampel et. al., 1986), and enjoys the usual rate of convergence under regularity conditions.

However, its bias and breakdown point depend upon the dimensionality p of the carrier

space (see Maronna, Bustos and Yohai, 1979, and Maronna and Yohai, 1987a).

Furthermore, it is necessary to robustly estimate the covariance matrix to implement the

GM-estimate, and this is not necessary for the S-estimate.

0Nonetheless one wonders how the two min-max estimates compare for fractions of

contamination smaller than their breakdown points. First some computations were carried

out under the unrealistic assumption that the covariance matrix for the carriers is known.

• Figure 2 displays the resulting bias curves of the min-max GM-estimate p = 1, 2, 3, 5, 10

and 15 carriers, along with the bias curves of the rin-max S-estimate S* and the maximal

bias curve of the LMS estimate (these latter biases being independent of the number of

• carriers p). Several observations are immediate: For each p > 2 the optimal GM-estimate

has significantly smaller bias than the optimal S-estimate for fractions of contamination not

too close to the GM-estimate breakdown point. Of course, as E approaches the breakdown

* point of a GM-estimate for any give p, the S-estimate will strongly dominate the GM-

estimate. Also, the performance of LMS (which is the limiting form of S* as E - 5 IN

0
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sufficiently close to that of S* to regard it as an "excellent" approximation to a min-max

bias solution (this is very similar to the results of Martin and Zamar, 1987a, who show that

an appropriately scaled median is an excellent approximation to the min-max bias scale

estimate for a positive random variable).

By Theorem 5.2 the optimal GM-estimate 0,, for p = 1 is nin-max bias optimal

among all regression equivariant estimates with model intercept zero, and also has

breakdown point .5. This global optimality of the GM-estimate and its actual oegree of

- dominance over the optimal S-estimate at p = 1 begs the following important question:

Does there exist a min-max bias regression estimate among the class of all regression

* equivariant estimates ?

We also made some calculations to reveal how estimation of the covariance matrix

inflates the mi-max biases of the GM-estimates. In order to do so we made use of recent

results on the maximal bias of covariance estimates due to Maronna and Yohai (198T). The

results are displayed in Table 1 for the case of the covariance matrix estimate studied by

Tyler (1987). Clearly, the price of estimating covariance can be high, even when the fraction

* of contamination is far from the breakdown point of the GM-estimate with known

covariance. See for example the £ = .05, p = 15 and c = .2, p = 3 cases. Of course,

the smaller breakdown points of the covariance matrix estimates results in smaller

* breakdown points for the GM-timates with estimated covariance.

The gross-error-sensitively (GES) is the supremum of the norm of the influence curve,

and it is a measure of the maximal bias caused by a vanishingly small fraction of

contamination. The GES is the derivative of the maximal bias curve at £ = 0, for well-

behaved estimators having an influence curve (which LMS and S* do not!). In Figure 2,

we display GES-based linear approximations to maximal bias for the optimal GM-estimates

for p = I and p = 10. The GES approximation seems rather good for values of e up to

say 40% or 50% of the breakdown point. This is in agreement with Hampel's rule of thumb

........-........... ................................
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(see Hampel et al., p 178).

GM-estimates

p r = 0.05 C = 0.10 e= 0.15 E=0.20

1 0.083 0.18 0.28 0.41

2 0.11 (.11)* 0.25 (.23) -1 (-) 0.68 (.55)

3 0.12 (.11) 0.29 (.25) - (-) 1.39 (.70)

4 0.15 (.14) 0.39 (.31) - (-) 00 (.82)

5 0.19 (.17) 0.49 (.36) 2.85 (.59) ,0 (1.00)

10 0.31 (.23) 00 (.50) 0c (.97) oo (cc)

* 15 0.62 (.29) 0c (.68) 0c (1.71) cc (cc)

S-estimates
0

S* .49 .77 1.05 1.37

LMS .53 .83 1.07 1.52

*i Table 1. Min-Max Biases of Optimal GM.estimates with Estimated

Covariance Matrix and Optimal S-estimates

- Numbers in parentheses are biases with covanance known

(i.e., they correspond to points on the curves in Figure 2)

t These three missing values were not computed because we

did not have available the corresponding biases for the
covariance matrix estimate. We hope to provide the

needed computation in the near future.

O.
.1%''

S

°P.



- 34-

REFERENCES

Bickel, P.J., 1984. Robust regression based on infinitesimal neighborhoods. Ann. Statist.

12, 1349-1368

Beran, R., 1977a. Robust location estimates. Ann. Statist. 5, 431-444,

Beran R., 1977b. Minimum Hellinger distance estimates for parametric models. Ann.

Statist. 5, 445-463.

Billingsley, A., 1968. Convergence of Probability Measures. Wiley, New York.

Donoho, D.L., 1982. Breakdown properties of multivariate location estimates. Ph.D.

qualifying paper. Department of Statistics, Harvard University, Cambridge, Mass.

Donoho, D.L., and Huber, P.J., 1983. The notion of breakdown point. In A Festschrift for

* Erich L. Lehmann P.J. Bickel, K.A. Dockrum, J.L. Hodges, Jr. (eds.). Wadsworth,

Belmond, Calif. 157-184.

Donoho, D.L. and Liu, R.C., 1985. The automatic robustness of minimum distance
functionals. Technical Report, Department of Statistics, University of California,

Berkeley, CA.

Hampel, F.R., 1974. The influence curve and its role in robust estimation. J. Amer. Statist.

Assoc. 69, 383-393.

Hampel, F.R. Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A., 1986. Robust Statistics:
The approach based on influence functions. Wiley, New York.

Huber, P.J., 1964. Robust estimation of a location parameter. Ann. Math. Statist. 35,

73-101.

Huber, P.J., 1981. Robust Statistics. Wiley, New York.

Huber, P.J., 1983. Minimax aspects of bounded-influence regression (with discussion). J.

Am. Statist. Assoc., 78, 66-80.

Jaeckel, L.A., 1971. Robust estimates of location: symmetry and assymetric contamination.

*... Ann. Math. Statist. 43, 1449-1458.

S-Krasker, W.S., 1980. Estimation in linear regression models with disparate data points.

Econometrica, 48, 1333-1346.

- Krasker, W.S. and Welsch, R.E., 1982. Efficient bounded-influence regression estimation.

S"J Am Statist. Assoc., 77, 595-604.

-. , Maronna, R., Bustos, O.H. and Yohai, V.J., 1979. Bias and efficiency - robustness of

general M-estimators for regression with random carriers. In Smoohing Technieques

S .

5 .. ,. -:. - '... .



-35.

for Curve estimation. F. Gasser and M. Rosenblatteas, Lecture Notes in Mathematics

757, Springer, Berlin, 91-116.

Maronna, R., and Yohai, V.J., 1987a. The breakdown point of simultaneous generai NI-

estimates of regression scale. Unpublished manuscript. Submitted to J. Am. Sta:u_ :

Assoc.

NMaronna, R., and Yohai, V.J., 1987b. The maximum bias of robust covariances.

Unpublished manuscript. Submitted to J. Am. Statist. Assoc.

Martin, R.D., and Zamar, R.H., 1987a. Min-max bias robust M-estimates of scale. Tech.

Report No. 72, Department of Statistics, University of Washington, Seattle. Submitted

to J. Am. Statist. Assoc.

Martin, R.D., and Zamar, R.H., 1987b. Min-max bias robust M-estimates of location.

Unpublished manuscript.

Rousseeuw, P.J.. 1981. Least median of squares regression. J. Am. Statist. Assoc., 79,

871-880.

Rousseeuw, P.J., and Yohai, V.J., 1984. Robust regression by means of S-estimators. In

Robust and Nonlinear Time Series, Franke, Hardle and Martin (eds.). Lecture Notes in

4 Statistics No. 26, Springer Verlag, New York.

Stahel, W.A., 1981. Breakdown of covariance estimators. Research Report 31, Fachgruppe

fudr Statistik, ETH, Zurich.

Tler, D.E., 1987. A distribution free M-estimate of multivariate scatter. Annals of

Statistics, 15, 234-251.

Yohai, V.J., 1987. High breakdown point and high efficiency robust estimates for

regression. Annals of Statistics, 15, 642-656.

4 Yohai. V.J., and Zamar, R.H., 1987. High breakdown estimates of regression by means o

the minimization of an efficient scale. To appear in the J. Am. Statistics. Assoc.

Zamar, R.H. (1985). Robust esimation for the Errors-in-Variables model. Ph.D. Thesi".

Department of Statistics, University of Washington.

..

. . . . . . . . .



-. p -' .' ..J -.7 0

b
T  

.1

CDJ

0

p
-  

1

I<0

0

0

GFS P 10 I

0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 016

e

Figure 1. Maximal Biases of b for b .85 and b --- .15, ith Corresponding Breakdown~Point e" = .15.

(p p =1, 1 p -110 and pM=x3 p=2 p= I

Residals (MS) Etimat

...

0" 0

.(.4

' '-"GGSS =pI

I,. GES 1 pI 1J

,.-0.0 0.1 0.2 0.3 0.4 0 5

• Figure 2. Bias Curves for Min-Max Bias S-estimate (S*), and Min-Max Bias GM-estimates
., (p = 1,2,3,5,10, IS), and Maximal Bias Curve for Least Median of Squared
• ". Residuals (LMS) Estimate



II..

6~

a

S

~Z,4~t F')
-w

S

S

S

',. ~

-. -p ~

Sd 5 5 5 5 5 5 0 5 5 5 5 5 5 5 S S
* * -- '--a. * a -- ,-*..- - -,
* --.---

. .~. . - - . -


